	Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych	
Nr 65	Politechniki Wrocławskiej	Nr 65

Studia i Materiały

Nr 31

2011

sterowanie pozycją, napęd dwumasowy, regulator FDC, struktura kaskadowa

Piotr J. SERKIES*

PORÓWNANIE WŁAŚCIWOŚCI DYNAMICZNYCH STRUKTUR REGULACJI POŁOŻENIA W NAPĘDZIE DWUMASOWYM Z KLASYCZNYM REGULATOREM KASKADOWYM ORAZ REGULATOREM FDC

W artykule przedstawiono porównanie właściwości dynamicznych klasycznej struktury kaskadowej z regulatorem PI oraz regulatora FDC w pozycjonowaniu napędu elektrycznego z połączeniem sprężystym. We wstępie przedstawiono przegląd metod pozycjonowania napędów z połączeniem sprężystym. W kolejnych rozdziałach przedstawiono model matematyczny rozpatrywanego napędu oraz opisano proponowane struktury sterowania. W ramach badań symulacyjnych sprawdzono wpływ nastaw regulatorów na ich dynamikę. Badania symulacyjne poparte zostały wynikami eksperymentalnymi.

1. WPROWADZENIE

Pozycjonowanie elementów wykonawczych w przemyśle jest jednym z głównych zadań, jakie są stawiane przed współczesnymi układami napędowymi. Aby sprostać wymaganiom takim jak precyzja sterowania, bezpieczeństwo, czas odpowiedzi itp. w procesie projektowania struktury sterowania należy uwzględnić charakterystykę maszyny roboczej, a w szczególności skończoną sztywność wału napędowego. Pominięcie charakterystyki wału prowadzić może do ujawnienia drgań skrętnych, które znacząco pogarszają dokładność pozycjonowania. W skrajnych przypadkach mogą prowadzić do uszkodzenia napędu i unieruchomienia urządzenia [1]–[7].

Podstawowym algorytmem sterowania pozycją napędów elektrycznych z połączeniem sprężystym jest kaskadowa struktura z dodatkowymi sprzężeniami bazująca na regulato-

^{*} Instytut Maszyn Napędów i Pomiarów Elektrycznych, ul. Smoluchowskiego 19, 50-372 Wrocław, e-mail: piotr.serkies@ pwr.wroc.pl

rach typu PI [1]. Wykorzystywane są również metody bazujące na bieżącej identyfikacji parametrów napędu przy wykorzystaniu rozszerzonego filtru Kalmana i zastosowaniu przestrajalnych regulatorów typu PI [2] i metody sterowania H[∞] [3]. W pracach [4], [5] przedstawiono regulator oparty o prawo Force Dynamic Control (FDC) dla napędu z silnikami synchronicznymi o magnesach trwałych. W pracy tej podzielono pętle sterowania na dwie oddzielne (praca zawiera wyłącznie badania symulacyjne). W [5] omówiono strukturę sterowania z regulatorem ślizgowym. Uzyskane wyniki zostały porównane z kaskadową strukturą opartą o prawo FDC (która prezentowana była również w pracy [4]). Również w tym przypadku przedstawiono wyłącznie wyniki symulacyjne. W ostatnim czasie pojawiły się prace opisujące zastosowanie regulatorów bazujących na nominalnych trajektoriach referencyjnych [6]. Wymagają one zastosowania filtrów cyfrowych w celu eliminacji drgań skrętnych napędu. W pracach [8], [9] zaproponowano zastosowanie sterowania predykcyjnego do pozycjonowania napędów dwumasowych. Jednak prezentowane rozwiązanie ma istotną wadę w postaci bardzo dużej złożoności obliczeniowej, co wymaga zastosowania szybkiego sterownika mikroprocesorowego.

Metoda FDC została zaproponowana przez prof. Dodds'a [10] i jest alternatywą dla metod powszechnie stosowanych. W obszarze napędu elektrycznego metody FDC wykorzystywane były do sterowania prędkością układu dwumasowego [11], w regulacji prędkości i mocy napędów z silnikami indukcyjnymi dwustronnie zasilanymi [12], czy w sterowaniu serwonapędów z silnikami synchronicznymi o magnesach trwałych [4], [5].

Głównym celem pracy jest porównanie metod pozycjonowania napędów z połączeniem sprężystym. W badaniach wykorzystano kaskadowy regulator położenia z regulatorem PI z dodatkowymi sprzężeniami oraz regulator oparty na prawie FDC (Force Dynamic Control). Prezentowane rozwiązania zostały przebadane symulacyjnie oraz eksperymentalnie. W podsumowaniu przeprowadzono krytyczną analizę rozważanych rozwiązań.

2. MODEL MATEMATYCZNY ROZPATRYWANEGO NAPĘDU

Model matematyczny rozpatrywanego układu napędowego można opisać poniższymi równaniami [13]:

$$\begin{cases} \frac{d}{dt}\omega_1 = \frac{1}{T_1}(m_e - m_s) & \frac{d}{dt}\omega_2 = \frac{1}{T_2}(m_s - m_L) \\ \frac{d}{dt}m_s = \frac{1}{T_c}(\omega_1 - \omega_2), & \frac{d}{dt}\alpha = \frac{1}{T_\alpha}(\omega_2) \end{cases}$$
(1)

gdzie:

 m_e – moment elektromagnetyczny,

 ω_1 – prędkość silnika,

 ω_2 – prędkość maszyny obciążającej,

 m_s – moment skrętny,

 α – pozycja wału maszyny roboczej,

 m_L – moment obciążenia,

 T_1 – mechaniczna stała czasowa silnika,

T₂ – mechaniczna stała czasowa maszyny obciążającej,

 T_c – stała czasowa elementu sprężystego,

 T_{α} – stała pozycjonowania. Wartości parametrów analizowanego układu wynosiły ($T_1 = T_2 = 0,203$ s, $T_c = 1,2$ ms, $T_{\alpha} = 0,5$ s). Równania zapisano w jednostkach względnych (p.u).

3. STRUKTURA STEROWANIA Z REGULATOREM FDC

Do wyznaczenia prawa sterowania wykorzystuje się bezpośrednio równania modelu napędu (1). Wychodząc od zmiennej sterowanej (w prezentowanym przypadku jest to położenie wału maszyny roboczej α), należy poddać ją tylu krotnemu różniczkowaniu, aby uzyskać w równaniu zmienną sterującą (którą jest moment elektromagnetyczny):

$$\begin{cases} \alpha \rightarrow s\alpha = \frac{1}{T_{\alpha}}\omega_{2} \rightarrow s^{2}\alpha = \frac{1}{T_{\alpha}}\left(\frac{1}{T_{2}}(m_{s} - m_{L})\right) \rightarrow \\ s^{3}\alpha = \frac{1}{T_{\alpha}}\left(\frac{1}{T_{2}}\left(\left(\frac{1}{T_{c}}(\omega_{1} - \omega_{2})\right) - sm_{L}\right)\right) \rightarrow \\ s^{4}\alpha = \frac{1}{T_{\alpha}}\left(\frac{1}{T_{2}}\left(\left(\frac{1}{T_{c}}\left(\frac{1}{T_{c}}(m_{e} - m_{s}) - \frac{1}{T_{2}}(m_{s} - m_{L})\right)\right) - s^{2}m_{L}\right)\right) \end{cases}$$
(2)

W kolejnym kroku należy wyodrębnić sygnał sterujący m_e:

$$m_e = m_s + \frac{T_1}{T_2} (m_s - m_L) + T_1 T_c s^2 m_L + T_1 T_2 T_c s^4 \alpha$$
(3)

Ponieważ w równaniu (3) występuje czwarta potęga operatora różniczkowania, jako model odniesienia przyjęto układ czwartego rzędu:

$$G_{z} = \frac{\alpha}{\alpha^{ref}} = \frac{\omega_{r_{1}}^{2} \cdot \omega_{r_{2}}^{2}}{\left(s^{2} + 2\xi_{1}\omega_{r_{1}} + \omega_{r_{1}}^{2}\right)\left(s^{2} + 2\xi_{2}\omega_{r_{2}} + \omega_{r_{2}}^{2}\right)}$$
(4)

Wyznaczając z równania (4) czwartą pochodną zmiennej sterowanej i podstawiając ją do równania (3), otrzymujemy:

$$m_{e} = T_{\alpha}T_{1}T_{2}T_{c}\left(\alpha^{ref} - \alpha\right) + m_{s} + \frac{T_{1}}{T_{2}}\left(m_{s} - m_{L}\right) + T_{1}T_{c}\left(s^{2}m_{L}\right)$$
$$-T_{\alpha}T_{1}T_{2}T_{c}\left(2\xi_{1}\omega_{r1}\omega_{r2}^{2} + 2\xi_{2}\omega_{r2}\omega_{r1}^{2}\right)\left[s\alpha\right] - T_{\alpha}T_{1}T_{2}T_{c}\left(4\xi_{1}\omega_{r1}\xi_{2}\omega_{r2} + \omega_{r1}^{2} + \omega_{r2}^{2}\right)\left[s^{2}\alpha\right] \quad (5)$$
$$-T_{\alpha}T_{1}T_{2}T_{c}\left(2\xi_{1}\omega_{r1} + 2\xi_{2}\omega_{r2}\right)\left[s^{3}\alpha\right]$$

Wykorzystując ponownie równania (1) można wyznaczyć kolejne pochodne zmiennej sterowanej:

$$[s\alpha] = \frac{1}{T_{\alpha}}\omega_{2}; [s^{2}\alpha] = \frac{1}{T_{\alpha}}\frac{1}{T_{2}}(m_{s} - m_{L});$$

$$[s^{3}\alpha] = \frac{1}{T_{\alpha}}\frac{1}{T_{2}}\left(\frac{1}{T_{c}}((\omega_{1} - \omega_{2}) - sm_{L})\right)$$
(6)

Ostatecznie prawo sterowania można zapisać w uproszczonej formie:

$$m_{e} = k_{1} \left(\alpha^{ref} - \alpha \right) + k_{2} \left(m_{s} - m_{L} \right) + k_{3} \left(s^{2} \left(m_{L} \right) \right) + k_{4} \left(q_{1} \omega_{2} \right) + k_{5} \left(q_{2} \left(m_{s} - m_{L} \right) \right) + k_{6} \left(q_{2} \left(\left(\omega_{1} - \omega_{2} \right) - q_{1} s \left(m_{L} \right) \right) \right) + m_{s} \right)$$

$$k_{1} = -T_{\alpha} T_{1} T_{2} T_{C} (\omega_{r_{1}}^{2} \omega_{r_{2}}^{2}); \quad k_{2} = \frac{T_{1}}{T_{2}}; \quad k_{3} = -T_{C} T_{1};$$

$$k_{4} = -T_{\alpha} T_{1} T_{2} T_{C} (2\zeta_{1} \omega_{r_{1}} \omega_{r_{2}}^{2} + 2\zeta_{2} \omega_{r_{1}}^{2} \omega_{r_{2}});$$

$$k_{5} = -T_{\alpha} T_{1} T_{2} T_{C} (2\zeta_{1} \zeta_{2} \omega_{r_{1}} \omega_{r_{2}} + \omega_{r_{1}}^{2} \omega_{r_{2}}^{2});$$

$$k_{6} = -T_{\alpha} T_{1} T_{2} T_{C} (2\zeta_{1} \omega_{r_{1}} + 2\zeta_{2} \omega_{r_{2}});$$

$$q_{1} = \frac{1}{T_{\alpha}}; q_{2} = \frac{1}{T_{\alpha} T_{2}}; q_{3} = \frac{1}{T_{C}};$$

$$(7)$$

Rys. 1. Struktura sterowania z regulatorem FDC Fig. 1. The control structure of FDC controller

Na rysunku 1 przedstawiono proponowaną strukturę sterowania. Do poprawnej pracy układu regulacji niezbędna jest znajomość pełnego wektora stanu dodatkowo rozszerzonego o moment obciążenia oraz jego pierwszą i drugą pochodną. Aby możliwa była realizacja powyższego algorytmu w celu estymacji rozszerzonego wektora stanu obiektu wykorzystano filtr Kalmana [13].

4. KASKADOWA STRUKTURA STEROWANIA Z REGULATOREM PI

W klasycznym układzie regulacji kaskadowej występuje szeregowe połączenie regulatorów prędkości i położenia. W większości przypadków regulator położenia jest zaprojektowany jako regulator proporcjonalny typu *P*. Jako podrzędny regulator prędkości używa się zazwyczaj regulatora typu *PI*. W przypadku napędów z połączeniem sprężystym regulator prędkości musi dodatkowo zapewniać tłumienie drgań skrętnych. Z tego powodu w jego strukturę wprowadzone muszą być dodatkowe sprzężenia zwrotne od wybranych zmiennych stanu [13]. W rozpatrywanym przypadku w strukturze regulacji prędkości wykorzystano regulator *PI* z dwoma dodatkowymi sprzężeniami od momentu skrętnego i różnicy prędkości.

Rys. 2. Kaskadowa struktura sterowania Fig. 2. Cascade control structure

Taka struktura zapewnia dowolne kształtowanie dynamiki pętli sterowania prędkością w liniowym zakresie pracy (poniżej ograniczenia momentu elektromagnetycznego). Nastawy regulatora oraz współczynniki wzmocnień wyznaczono na podstawie [13]:

$$k_8^{\omega} = \frac{1}{\omega_r^2 T_2 T_C} - 1, \quad k_1^{\omega} = \frac{T_1 (4\xi^2 - k_8)}{T_2 (1 + k_8)},$$

$$K_I^{\omega} = \omega_r^4 T_1 T_2 T_C \qquad K_P^{\omega} = 4\xi \omega_r^3 T_1 T_2 T_C$$
(9)

W przypadku regulatora pozycji, zakładając zoptymalizowany charakter pętli sterowania prędkością, nastawy regulatora proporcjonalnego przyjmują postać:

$$K_{PP} = \frac{T_{\alpha}}{2T_{0\omega}} \tag{10}$$

gdzie $T_{0\omega}$ – opóźnienie odpowiedzi prędkościowej zoptymalizowanej pętli sterowania prędkością.

Na rysunku 2 przedstawiono strukturę analizowanego układu.

5. BADANIA SYMULACYJNE

W niniejszym punkcie przedstawiono wybrane wyniki badań przedstawiające właściwości rozważanych struktur. We wszystkich testach przyjęto ograniczenie momentu elektromagnetycznego na poziomie $m_e^{\max} = \pm 3,5$ [p.u]. W strukturze kaskadowej przyjęto ograniczenie prędkości zadanej na poziomie $\omega_r^{\max} = \pm 1$ [p.u]. W pierwszej kolejności

Rys. 3. Przebiegi wybranych zmiennych stanu w obszarze pracy liniowej:
a), c), e) struktury kaskadowej, b), d), f) struktury FDC,
gdzie: a), b) moment skrętny, c), d) prędkość obciążenia, e), f) pozycja wału
Fig. 3. Selected state variables in the linear operating:

a), c), e) cascade structure, b), d), f) FDC structure,

where: a), b) torsional torque, c), d) load speed, e), f) load position

porównano działanie proponowanych algorytmów w liniowej obszarze pracy. Struktura kaskadowa pracowała z następującymi parametrami: układ pierwszy $-\omega_r^1 = 70$, $\zeta_1 = 1$, układ drugi $-\omega_r^2 = 40$, $\zeta_1 = 0.75$, $K_{pp} = 2.5$. W przypadku algorytmu *FDC* przyjęto następujące nastawy: $\omega_{r1} = \omega_{r2} = 20$, $\zeta_1 = 1$ oraz $\omega_{r1} = \omega_{r2} = 40$, $\zeta_1 = 1$. Przebiegi wybranych zmiennych stanu układu napędowego dla rozważnych struktur regulacji przedstawiono na rysunku 3.

Rys. 4. Wartość kryterium ITAE w zależności od pulsacji rezonansowej (a, c) i współczynnika tłumienia (b, d) dla struktury: a), b) kaskadowej, c), d) FDC Fig. 4. ITAE criterion value based on pulsation resonance (a, c) and damping factor (b, d) for the structure: a), b) cascade, c), d) FDC

Aby możliwa była ocena wpływ parametrów projektowych (pulsacja rezonansowa oraz współczynnik tłumienia) przebadano ich wpływ na zmianę kryterium, jakości regulacji *ITAE (Integral of Time multiplied by Absolute Error*).

$$ITAE = \sum t \cdot \left| \alpha^{\text{ref}} - \alpha \right| \tag{11}$$

Dodatkowo sprawdzono, jak na wartość *ITAE* wpływa poziom zadanej pozycji. Wyniki przedstawione zostały na rys. 4.

Analizując przebiegi z rysunku 4 można zauważyć, że w przypadku zmiany współczynnika tłumienia dla regulatora kaskadowego następuje zmniejszenie wartości wskaźnika regulacji (rys. 4b) jest to związane ze zwiększającym się prze regulowaniem w sygnale prędkości, co przyśpiesza dojście do zadanej pozycji. W przypadku regulatora *FDC* wsp. tłumienia mniejszy od jedności prowadzi do powstania niedopuszczalnego przeregulowania pozycji wału maszyny zadanej.

Kolejno sprawdzono jak na wartość kryterium *ITAE* wpływa zmiana parametrów napędu. Przyjęto możliwość zmian w zakresie od 0.5 wartości znamionowej do jej dwukrotności (na rysunku jest do 2.5 - dodatkowo ile to jest 1 dla t_2 w Pu). Uzyskane wyniki przedstawiono na rys. 5.

Rys. 5. Wpływ zmian stałej mechanicznej (b, d), oraz stałej pozycjonowania (a, c) na wartość wskaźnika ITAE dla struktury: a), b) kaskadowej, c), d) FDC
Fig. 5. Influence of changes in the mechanical constant (b, d), and positioning constant (a, c) on the value of ITAE index for the structure, where: a), b) cascade structure, c), d) FDC

6. BADANIA EKSPERYMENTALNE

Badania eksperymentalne przeprowadzone zostały na stanowisku zbudowanym z silników prądu stałego o mocy 500 W ($I_n = 2,9$ A) i momencie bezwładności J = 0,0038 kgm² połączonych ze sobą długim wałem (L = 0.6 m, $\Phi = 6$ mm). Silnik napędowy zasilany jest z przekształtnika pracującego w konfiguracji mostka H. Mostek ten sterowany był przez sprzętowy modulator szerokości impulsów o częstotliwości nośnej 13 kHz. Prędkość silnika napędowego mierzona była przez enkoder inkrementalny o rozdzielczości 36000 impulsów na obrót. Prąd mierzony był za pomocą przetworników typu *LEM*. Algorytm zaimplementowany został na karcie DS1104 z procesorem sygnałowym. Cała struktura próbkowana była z krokiem 0,5 ms.

Przy badaniach eksperymentalnych przyjęto następujący algorytm: w czasie t = 0 s następowała zmian pozycji zadane do wartości znamionowej bądź do 20% tej wartości. Eksperyment kończył się po upływie 3 s.

W pierwszej kolejności sprawdzono wpływ szybkości modeli odniesienia na działanie układu w warunkach eksperymentalnych. Do badań przyjęto parametry identyczne jak w badaniach symulacyjnych. Wyniki porównawcze przedstawione zostały na rys. 6. Kolejno sprawdzono działanie analizowanych struktur w obszarze ograniczeń. W tym celu zadano znamionową wartość pozycji. Uzyskane przebiegi przedstawiono na rys. 7.

Rys. 6. Eksperymentalne Przebiegi wybranych zmiennych stanu w obszarze pracy liniowej: a), c), e) struktury kaskadowej, b), d), f) struktury FDC,

gdzie: a), b) moment skrętny, c), d) prędkość obciążenia, e), f) pozycja wału maszyny roboczej Fig. 6. Experimental waveforms of selected state variables in the linear operating:

a), c), e) cascade structure, b), d), f) FDC structure,

where: a), b) torsional torque, c), d) load speed, e), f) load position

Rys. 7. Przebiegi eksperymentalne w obszarze ograniczeń: a), c), e) struktury kaskadowej,
b), d), f) struktury FDC. Gdzie: a), b) momenty, c), d) prędkości, e), f) pozycja wału maszyny roboczej
Fig. 7. Experimental waveforms in the limits: a), c), e) the cascade structure, b), d), f) structure of the FDC. Where: a), b) torques, c), d) speed e), f) the position of the shaft driven machine

Z prezentowanych przebiegów widać, że w przypadku struktury kaskadowej wolno nastrojona pętla sterowania prędkością powoduje widoczne opóźnienie w dojściu układu do pozycji zadanej.

7. PODSUMOWANIE

W pracy przedstawiono porównanie dwóch struktur sterowania położeniem napędu z połączeniem sprężystym. Pierwszą była struktura z regulatorem *FDC*, natomiast drugą kaskadowa struktura z regulatorem *PI* z dodatkowymi sprzężeniami w torze sterowania prędkością oraz nadrzędnym proporcjonalnym regulatorem położenia. Przedstawiono sposób doboru nastaw dla obydwu struktur. W badaniach symulacyjnych zaprezentowano wpływ poszczególnych parametrów na wskaźnik, jakości sterowania ITAE. Rozważania symulacyjne poparte zostały badaniami eksperymentalnymi. Z przeprowadzonych analiz widać, że struktura *FDC* posiada bardzo dobre właściwości dynamiczne, natomiast jej największą wadą jest brak możliwości bezpośredniego ograniczani prędkości, co znacząco ogranicza możliwości jej zastosowania.

Praca współfinansowana w ramach Stypendium współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (MK/SN/215/IV/2010/U).

LITERATURA

- DEUR J., PERI' C.N., Pointing and tracking position control system of electrical drives with elastic transmission, 9th International Conference and Exhibition on Power Electronics and Motion Control- EPE PEMC, Kosice, Slovak Republic, 2000.
- [2] SCHUTTE E., BEINEKE S., ROLFSMEIER A., GROTSTOLLEN H., Online Identification of Mechanical Parameters Using Extended Kalman Filters, Industry Applications Conference IAS'97, New Orleans 1997.
- [3] SEIJI HASHIMOTO, KENJI HARA, HIROHITO FUNATO, KENZO KAMIYAMA, AR-Based Identification and Control Approach in Vibration Suppression, IEEE Transactions on Industry Applications, 2001, Vol. 37, No. 3.
- [4] DODDS S.J., PERRYMAN R., RAPSIK M., VITTEK J., Forced dynamics control of electric drives employing PMSM with a flexible coupling, Australasian Universities Power Engineering Conference, 2007, AUPEC 2007, 9–12 Dec. 2007.
- [5] VITTEK J., MAKYS P., STULRAJTER M., DODDS S.J., PERRYMAN R., Comparison of sliding mode and forced dynamics control of electric drive with a flexible coupling employing PMSM, International Conference on Industrial Technology, 2008, ICIT 2008.
- [6] FITRI M, YAKUB M., MARTONO W., AKMELIAWATI R., Vibration Control of Two-Mass Rotary System Using Improved NCTF Controller for Positioning Systems, Control and System Graduate Research Colloquium (ICSGRC), 2010.
- [7] PETER K., SCHÖLING I., ORLIK B., Robust Output-Feedback H Control With a Nonlinear Observer for a Two-Mass System, IEEE Transaction on Industrial Applications, 2003, Vol. 39, No. 3, 637–644.
- [8] SERKIES P.J., SZABAT K., Predykcyjne sterowanie pozycją w napędzie elektrycznym z połączeniem sprężystym, Przegląd Elektrotechniczny, 2011, Vol. 87, No. 2.
- [9] SZABAT K., SERKIES P., NALEPA R, CYCHOWSKI M, Predictive Position Control of Elastic Dual-Mass Drives under Torque and Speed Constraints, International Conference and Exhibition on Power Electronics and Motion Control- EPE-PEMC'2010, Ohrid Macedonia.
- [10] DODDS S.J., VITTEK J., Force dynamics control of electric drives, Edis–Zilian University publisher 2003.
- [11] SZABAT K., ORLOWSKA-KOWALSKA T., Damping of the Torsional Vibration in Two-Mass Drive System Using Forced Dynamic Control, The International Conference on Computer as a Tool EUROCON, 2007, 9–12 Sept. 2007.
- [12] GIRLOTKA K, JELEŃ M, JAREK G., Sterowanie polowo zorientowane z wymuszeniem dynamiki maszyny dwustronnie zasilanej, Przegląd Elektrotechniczny, 2010, Vol. 86, No. 2, 380–383.
- [13] Szabatt K., Struktury sterowania elektrycznych układów napędowych z połączeniem sprężystym, Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej nr 61, Wrocław 2008.

COMPARISON DYNAMIC PROPERTIES OF POSITION CONTROL STRUCTURES IN TWO-MASS DRIVE WITH THE CLASSIC CASCADE CONTROLLER AND FDC CONTROLLER

This paper presents a comparison of dynamic properties of the classical cascade structure with the PI controller and the FDC controller in the problem of positioning two-mass drive. In the introduction provides an overview of methods for positioning two-mass drives. The next chapters, presents a mathematical model of considered drive and described control structures. The simulation study verified influence of the controllers tuning on drive dynamics. Simulation studies were supported by experimental results.