

Exercises on drive sizing with Drive Solution Designer (DSD) Start-up training

Referent: DSDTeam /SSC, as of May 08, 2018

Table of contents (1/2) - Beginners

		Exercise	Content	Products	
	01	Determination moment of inertia	Inertia calculator	-	20min
	02	Belt conveyor with S3 profile	Sizing with operating mode	SmartMotor m300	30min
	03	Motion Designer	Export of profile data	-	10min
	04	Spindle drive	Create motion profile, use auxiliary calculators	m850, i950	30min
	05	Belt conveyor start/stop	Use of checklist, ApplicationTuner	8400StateLine, g500-B, m550	60min
	06	Travelling drive 1	Create motion profile	m500, g500 Cl	40min
	07	Chain conveyor	Sizing with operating mode	SmartMotor m300	40min
	08	Unwinder	Tooth belt transmission, field-weakening	MH, 9400	40min
2	09	Travelling drive 2	Evaluation of sizing, ApplicationTuner	MH, g500	30min

Table of contents (2/2) - Advanced

	Exercise	Content	Products	
10	Rack drive	Advanced exercise, counter force	MCS, g700, i700	40min
11	Stacker crane	Multi-axis grouping	MCA, g500, 9400	90min
12	Rewinder for paper	Optimisation, user motor, field-weakening	MH (50 vs. 29Hz), 9400	60min
13	Project evaluation	Optimisation, motor selection	MCA, MF, g500, 8400TopLine	40min
14	Hoist with variable profile	Optimisation, user motor, field-weakening	m500, g500, i500	60min
15	BlueGreen Solutions	Energy efficiency	various	30min
16	Create user motor	Work with checklist	-	30min

Exercise 01–Moment of inertia

A belt conveyor is loaded with a cylindrical steel pressure roll for testing purpose.

There are four cylindrical drill holes (each for entire length of pressure roll) with a diameter of 10mm each.

The drill holes are located on a radius of 50mm.

Given:

Diameter drive roll $d_1 = 112mm$ Diameter pressure roll $d_2 = 170mm$ Diameter drill holes $d_3 = 10mm$ Radius where drill holes are located $r_1 = 50mm$ Length of cylinder I = 700mm Material of cylinder = Steel

Sought-after: Moment of inertia J of pressure roll

Exercise 01–Moment of inertia

Exercise 02 – Belt conveyor with S3 profile

A belt conveyor for unit loads with a length of 10m is in S3 operation with a relative operating time of 50% for 16hours/day.

- The belt conveyor is continuously loaded with 35kg/m. The belt weighs 3kg per meter belt length and runs on a supporting surface. There are no supporting rollers.
- The belt speed is 60m/min. Cycle time is 5min with acceleration time and deceleration time being 5s each.

Drive roll and idler pulley:

Massive cylinder, m = 190kg, $d_A = 190$ mm

Friction coefficient: Belt/Surface: 0.3

Exercise: Sizing with SmartMotor and right-angle gearbox.

Exercise 03 – Motion Designer

1) Enter the profile shown above in MotionDesigner. Open Motion Designer via the symbol bar

- 2) Export the profile and save to a file.
 - a. Export to txt-file
 - b. Save as Lenze Motion Profile (*.Imp)

7 DSD_V4-5_Exercises_2018_05_07_EN.ppt V1.0 08.05.2018 Referent DSDTeam /SSC

Übung 03 – Motion Designer

Giving a clue:

Prive Solution Designer											
File Edit View Extras Tools	Window Help										
i D 😅 🖬 🗢 🌍 🗟 🛆 🖽 🦷	Fii 🕎 🛷 Fii 🗸 🛞 🗟 🛱	à 🛛 k?									
🚥 Project_2. dsd *	MotionDesigner										
Drive system overview											

Call MotionDesigner directly via DSD's symbol bar.

🔤 Driv	🔤 MotionDesigner	
File	🗅 😅 🖬 🏚 🔠 💕 🎆 🗠 여 🥜 🦉 🔍	[] ≥ Λ \ \ □ ×]
i 🗅 🖻		
🔤 Prog	Add parameters	
Drive s	Copy object	
	🖺 Paste object	\
	🗙 Delete object	
	 Display object in the background 	
	Pobject properties	
	Export profile data	
	Import profile data	
	🔄 Update	
	-2,0	-

Import / Export of profile data via context sensitive menu (right hand mouse click on 'Profile')

Exercise 04 – Spindle drive 1/2

Vertical spindle drive:

Mains supply: 3AC 480 V / 60 Hz

Mechanical data of roller spindle:

- The spindle is made of steel and has a length of 1000mm

- Leadscrew pitch 5mm, leadscrew diameter 25mm
- Mass of the slide 200kg, coefficient of friction of guide rail 0.02

Motion profile:

- Starting at the bottom position the slide is moved upward for a distance of 410mm within a time of 1.63s with a payload of 500kg.

- Acceleration time and deceleration time is 0.5s with a jerk ratio of 33.33%.

- Standstill time at top position is 2s, thereafter reverse motion to bottom position with a payload of 200kg. Standstill for 2s.

- Activate the brake and inhibit the controller at standstill

Carry out a DSD sizing with the following components:

- Servo synchronous motor m850 with brake and absolute value encoder
- Servo inverter i950 with brake resistor

Exercise 04 – Spindle drive 2/2

Hints:

- For operation in vertical direction set angle of tilt to 90°
- Use auxiliary calculators für determination of
 - Spindle efficiency
 - Spindle moment of inertia

Dimensioning for a queue conveyor in baggage handling (belt conveyor with frequent start/stop operation).

Document

The requirements have been collected in the document "Checklist Application Exercise05.pdf".

Tasks:

- 1. Carry out a sizing with DSD with IE3-motor m550, right-angle gearbox g500-B and frequency inverter 8400StateLine.
- 2. Check the data in the check list for plausibility. Is anything missing?

Tasks continued:

3. On request the customer informs you on the moment of inertia of both drive roller and idler pulley. The moment of inertia 0.06kgm² each.

Reopen the DSD project from task 1 and enter the moment of inertia in the Application Tuner.

Analyse the effect on the drive sizing.

A payload is to be moved according to a given speed profile by a wheel-driven travelling drive.

Data in detail:

Horizontal movement, one wheel is driven. Mass of vehicle: 2.650 kg Payload: 1.500 kg Wheel diameter: 400 mm Specific travelling resistance: 250 N / to

Kinematics: worst case

Operating time: 1 shift (8h/Tag) Acceleration and deceleration: 2 m/s² Movement in positive direction : 30 m max. travelling speed: 220 m/min Stand still: 10 s

Ambient conditions:

Ambient temperature geared motor: max. 30 °C Ambient temperature inverter: max. 40 °C Site altitude: below 1000 m Electrical supply system: 3 AC 400 V, 50 Hz

Drive solution sought-after:

Drive i500, IE3-motor m500 with g500H helical gearbox in direct mounting. Make alternative solutions with both m550 and m540. What is the difference?

13 DSD_V4-5_Exercises_2018_05_07_EN.ppt V1.0 08.05.2018 Referent DSDTeam /SSC

Exercise 07 – Heavy duty chain conveyor

A chain conveyor is operated at a maximum velocity of 12m/min with a payload mass $m_{var,L}$ =5170kg.

The application data is:

d = 96.40mm; m_{Chn} = 70kg; μ_{Gdn} = 0.09; η_{Chn} =0.95

The chain conveyor is used in an intermittent operation mode (S3) with a relative operating time of 80% in two shift operation (16hours/day).

At standstill controller inhibit is set.

There is no motor brake.

Both, the acceleration and deceleration time are 1.5s. The cycle time is 50s (with a positive direction of movement).

The supply and ambient conditions are:

3AC 400V supply system; power system: TT/TN system; max. ambient temperature of motor/gearbox: 30°C; max. ambient temperature of inverter: 40°C; site altitude: 1000m

<u>Task:</u> A suitable Smart Motor m300 without energy saving function and a g500-S gearbox (mounting position E) are to be selected.

Exercise 08 – Unwinder

Dancer-controlled single unwinder

Mains supply: 3AC 400 V / 50 Hz

Application data:

 $d_{min} / d_{max} = 80 / 800 mm$

Width = 500mm

Density = 0.95kg/dm³

Motion profile with S-shape :

 $v_{max} = 400 m/min$

Jerk ratio: 33.3%

 $t_{acc} = t_{dec} = 12s$ $t_{0.1} = t_{0.2} = 10s$ $t_{ES} = 3s$ $t_{0.3} = 600s$

Set brake and controller inhibit at standstill

Carry out a drive sizing with the following components:

Tooth belt transmission, Servo controller 9400, IE2 asynchronous motor with feedback system

Hint: Use motor in field-weakening range to cut motor power

 $\label{eq:Fmin} \begin{array}{l} {\sf F}_{min} \;/\; {\sf F}_{max} = 200 \;/\; 200 N \\ \\ {\sf Thickness} = 0.08 mm \\ \\ {\sf J}_{Cor} \;=\; 76 kg cm^2 \qquad \qquad \eta \; = \! 0.97 \end{array}$

A payload is to be moved according to a given speed profile by a wheel-driven travelling drive.

- 1. Please load the existing DSD-Project Exercise09_travelling_drive_MH_g500.dsd
- 2. Validate the selected components with respect to the application.
- 3. The original sizing is to be changed from trapeze profile to s-shape with jerk ratio 33%. Carry out the adaption with Application Tuner. Evaluate the result.
- 4. Change the profile in the original sizing to s-shape with jerk ratio 20% and keep the max. acceleration at 2m/s².

Exercise 10 – Rack drive

The vertical rack drive of a portal robot has to move a load of 50kg according to a given profile:

Infeed 1200mm

Travelling speed 140m/min

Acceleration-, deceleration- and stand still time 0.3s each.

Two shift operation.

The module length of the rack drive is given with 2.2mm and the pinion has 30 teeth (effective pinion diameter $d_{eff} = 66$ mm).

The efficiency rack/pinion is 90% and the coefficient of friction of the guide rail is10N.

The customer asks for a servo system with i700, synchronous servo motor MCS and planetary gearbox g700.

Exercise 10 – Rack drive

Exercise 11 – Stacker crane

Data for travelling axis and lifting axis: Travelling distance: s_{max} = 27m Lifting height: h_{max} = 13.5m

Load handling time: 6s, Simultaneous start of both axes Travelling drive: v_{max} = 3.6m/s a_{max} = 1.7 m/s² Lifting drive: v_{max} = 1.3m/s a_{max} = 1.0 m/s²

Ambient temperature: T_{max}= 40°C Profile according to <u>FEM standards</u> (see sketch below right)

<u>Tasks:</u>

1. Determine and sketch the coordinated profiles of both axes.

2. Select a drive solution for both axes with DSD: Components: MCA, g500-B, 9400

3. Size a regenerative supply module.

 $\frac{2}{3}$

3

Dancer-controlled single rewinder:

- Mains supply: 3AC 400 V / 50 Hz
- $d_{min} / d_{max} = 76 / 1350 \text{mm};$ $F_{max}(d_{min}) / F_{max}(d_{max}) = 360 / 250 \text{N}$
- Material: Width = 600mm; Thickness = 0.1mm; Density = 0.9kg/dm³
- Motion profile: $v_{max} = 400$ m/min; $t_{acc} = 20$ s; $t_{dec} = t_{ES} = 15$ s;
- S-shape with jerk ratio 33.3%
- Coil and winding shaft moment of inertia = 76kg/cm²

Tasks:

- a. Select a suitable drive system with tooth belt transmission and IE2-motor with feedback and servo controller 9400
- b. Create an alternative with maximum utilisation of field-weakening
- c. Create an alternative with a MH-motor in 29Hz technology (see user motors)

Exercise 13 – Project evaluation1/2

Open example project "Travelling drive"

1. Evaluate the utilisation of the selected components. For this purpose check the recommendations on reserves in the DSD help.

BSD Drive Solution Designer v4.5	
T ← ↔ Ausblenden Zurück Vorwärts Startseite Drucken	
Inhait Index Suchen	Lenze Prev page Next page
Zu suchendes Schlüsselwort:	Results: comparing, optimising, logging
reserve	Reserves with regard to drive sizing
Reserves with regard to drive sizing	In order to avoid a multiple consideration of reserves, no reserves whatsoever are allowed for in the DSD (exception: DC bus power in the multi-axis grouping).
	Notel

Exercise 13 – Project evaluation 2/2

- 2. Carry out alternative sizings:
 - b. with a MCA motor with reduced power
 - c. with a MF motor and use of field-weakening
- 3. Compare the results of all three projects.

Exercise 14 – Hoist

Rope-guided hoist without counter weight:

- Mains supply: 3AC 400 V / 50 Hz
- Diameter of drum = 300mm
- Mechanical efficiency = 90%
- The lifting speed is adapted in dependency of the load:
- $m_{L} = 1000 \text{kg} \rightarrow v = 0.7 \text{m/s}; m_{L} = 400 \text{kg} \rightarrow v = 1.4 \text{m/s}; m_{L} = 100 \text{kg} \rightarrow v = 2.0 \text{m/s}$
- Acceleration / deceleration 1m/s² each
- Lifting height up and down 5m each
- Standstill time 1s between each movement

Tasks:

- a. Select a suitable drive system with an IE3 asynchronous motor m550 with feedback, right-angle gearbox and inverter i500
- b. Carry out an alternative with utilisation of field-weakening

Exercise 15 – Energy efficiency

Comparison of different drive systems in terms of energy efficiency

a. Open DSD's example project on "Hoist drive without conterweight"

- b. Carry out an alternative with synchronous servo motor MCS19J30 and save to a file. Keep a 9400 single axis with brake resistor.
- c. Carry out an alternative with synchronous servo motor MCS19J30 and 9400 multi axis (Supply via DC link).
- d. Open BlueGreen solutions and make a comparison of the three projects

Exercise 16 – Creation of user motor

1. Open checklist:

2. Open dialogue "Manage user motors":

- 3. Create a new data set for motor m850 120S as user motor.
- 4. Create a DSD project by including this user motor.

Solutions

Exercise 01 – Moment of inertia

Solution:

Inertial calculator	X	Inertial calculator	
Body Cylinder 💌 Designation	pressure roll	Body Cylinder 💌	Designation hole
Rotary axi	s zaxis 💌		Rotary axis 🗾 🔽
Diamete	🖌 170 mm 🖌	VA	Diamete 💙 10 mm 💌
Length	700 mm 💌		Length 700 mm 💌
Mass s	election		Mass selection
Density	7850 kg/m³ 💌 🏢	-(····································	Density 7850 kg/m³ 💌 🏢
Z Mass	124.725548037 kg	z	Mass 0.43167629078 kg 💌
🗌 Use pa	rallel-axis theorem		☑ Use parallel-axis theorem
Distance	100 mm 💌		Distance 50 mm 💌
Speed as	lastation based on v=const reference n(d1)		Speed edeptation based on unconst reference p(d1)
J d1		J	d1 V 112 mm V
J'		J'	
$M = (d_1) (d_2)$		$(M = d_1) (d_2)$	az 🔮 170 mm 👻
Moment of iner	tia of body =		Moment of inertia of body =
V = const +/-	0.196 kgm² 🗸	v = const	+ /4.71E-04 kgm² 💙
Accent	Change		Accent
value	value		value value
Body Designation	J[kgm²] Delete	Body Desi	ignation J[kgm²] Delete
Cylinder pressure roll 0.1	956 marking	Cylinder pressure roll	I 0.1956 marking
Cylinder hole 4	707E-04	Cylinder hole	4.707E-04
Cylinder hole 4	707E-04 Delete	Cylinder hole	
Cylinder hole 4	707E-04	Cylinder hole	4.707E-04
Total 0.194	kgm² 💌	Total	0.194 kgm² 💌
	Close	Help	Close

Exercise 02 – Belt conveyor with S3 profile

Solution example:

28

Drive Solution Designer V4.5.0.5 (Manufacturer license)

File Edit View Extras Tools Window Help

🗅 😅 🖬 😋 🍩 🖪 🛆 🛤 🖷 🗮 🛷 🖉 🖽 🖌 🛞 🏲 🗟⇔(실, 📿 😢

Exercise02_belt_conveyor_m300_V4_5.dsd

400.17

Supply network

Drive system overview

_

			400 0	-
		Nphs	3.0	-
		T T	50 Hz	-
			TT/TN system	-
nertial calculator				×
Field Cylinder	▼ Designat	ion drive roll		
	Rota	aryaxis zaxis	-	
ν.	Dia	mete 👻 190	mm 👻	
	Leng	gth 100	mm 👻	
r) IZ 🔍 🛛 🖉	vlass selection		
	X Den	sity 1	kg/m³ 👻	P
	Mas	s 190	kg 👻	
2	🕅 U	Jse parallel-axis theo	rem	
	Dista	ance 100	mm 👻	
M:d1 (J			
	Moment	of inertia of body		=
v = const	+/-	0.857	kgm² 👻	
	Accept value	Chan valu	ge e	
Field	Designation	J[kgm ²] Dele	te
Cylinder	drive roll	0.8574	mark	ing
	iaiei baileà.	p.00/4	Dele	te le
L	Total 1.1	71 kami	2	

MS 080-32		gé	500-B240	Belt conv	Belt conveyors for unit loads		
P _N	1.36 kW	i _{req}	25.866	Pcto	1.2 kW		
n _N	2600 1 <i>/</i> min	i _{act,G}	23.450	P _{rms,cto}	0.791 kW		
MN	5.00 Nm	Туре	Direct mounting	P _{max}	1.2 kW		
IN	2.80 A	M _{per,out}	240 Nm	M _{max}	118 Nm		
A(M _{rms})	74 %	kg	1.00	n _{max}	101 1 <i>/</i> min		
A(M _{max})	50 %	n _{per,in,max}	4500 1/min	a _{max}	0.200 m/s ²		
k _{J,max}	3.7	n _{per,th,out}	126 1 <i>/</i> min	J _{max}	5.42 kgm²		
		n _{in,max}	2357 1/min	n _{av}	48.6 1 <i>/</i> min		
		n _{max}	101 1 <i>/</i> min				
		Meg	106 Nm]			
		A(Meg)	44.3 %	11			
		A(M _{max})	49.0 %	11			
		A(T)	0 %				
		Ath1,G (hth)	32.3 %	11			
		A(n _{max})	52.4 %				

Determination of moment of inertia of rollers: This includes drive roll and idler pulley. There are no supporting rollers.

Lenze

Referent DSDTeam /SSC

Exercise 04 – Spindle drive

Solution:

v = const

Moment of inertia of body

+/-

3.01E-04

=

•

kgm²

Solution to 1:

Exercise05_queue_conveyor_without_J_V4_5.dsd

Drive system overview

Supply network		E84AVSCx1524		m550-P90/L4		g50	0-B240	Belt conveyors for unit loads	
U	400 V	P _N	1.50 kW	P _N	1.50 kW	İ _{req}	3.9047	Pcto	1.5 kW
Nphs	3.0	IN	3.90 A	n _N	1442 1 <i>i</i> min	i _{act,G}	3.5650	P _{rms,cto}	0.956 kW
f	50 Hz	I _{max}	7.80 A	MN	9.93 Nm	Туре	Direct mounting	P _{max}	1.5 kW
	TT/TN system	A _{th,max}	82.6 %	IN	3.30 A	M _{per,out}	138 Nm	M _{max}	39.2 Nm
		A(I _{red,max})	71.4 %	A(M _{rms})	98 %	k _G	1.00	n _{max}	369 1 <i>/</i> min
		A(I _{max,I} / I _{N,M})	2.36	A(M _{max})	90 %	n _{per,in,max}	4500 1 <i>/</i> min	a _{max}	6.84 m/s²
		A _{th,Brm}	3.15 %	A(M _{dyn,M})	149 %	n _{per,th,out}	438 1 <i>1</i> min	J _{max}	0.227 kgm²
		A _{Brm} (P _{max})	23.5 %	k _f	0.91	n _{in,max}	1317 1 <i>/</i> min	n _{av}	234 1 <i>/</i> min
		Туре	ERBP180R200W	k _{J,max}	3.3	n _{max}	369 1 <i>/</i> min		
		A _{th,Rb}	45.4 %			Meg	25.6 Nm		
		A _{max,Rb}	23.3 %			A(M _{eq})	18.6 %]	
						A(M _{max})	33.1 %]	
						A(T)	0 %]	
						A _{th1,G} (n _{th})	32.4 %		
						A(n _{max})	29.3 %		

Solution to 2. - Validation of check list

- The information on the moment of inertia of both drive roller and idler pulley is missing. As there is no information on the geometry of the rollers, there is no chance to derive the moment of inertia.
- As for queue conveyors the moment of inertia of the rollers is a significant fraction of the moment of inertia of the whole application (here 1/3). this information should be collected from the customer.

Solution to 3. – Application Tuner

The consideration of the moment of inertia of drive roller and idler pulley leads to motor overload. Selection of a bigger motor becomes necessary.

Referent DSDTeam /SSC

08.05.2018

Project comparison

Possible solution with m550:

Helical gearboxes of type g500-H with maximum torque of 3000Nm can be combined with m550. g500-H in the torque range of 5000 – 14000Nm can be mounted on m540.

660	Exercise06_travelling_drive_m550_g500H3000_i550_V4_5.dsd										
D)rive syste	em overview									
Supply network i550-C30/400-3			m550-P160/L4		g50	00-H3000	Travelling drive				
	J	400 V	P _N	30.0 kW	P _N	26.3 kW	İreq	14.737	Pcto	34 kW	
Ν	V _{phs}	3.0	IN	61.0 A	n _N	2580 1/min	i _{act,G}	14.233	P _{rms,cto}	13.3 kW	
f		50 Hz	I _{max}	122 A	MN	97.4 Nm	Туре	Direct mounting	P _{max}	34 kW	
		TT/TN system	A _{th,max}	33.2 %	l _N	51.3 A	M _{per,out}	2530 Nm	M _{max}	1868 Nm	
			A(I _{red,max})	64.5 %	A(M _{rms})	63 %	k _G	1.00	n _{max}	175 1 <i>/</i> min	
			A(I _{max,I} / I _{N,M})	2.38	A(M _{max})	80 %	n _{per,in,max}	3500 1/min	a _{max}	2.00 m/s²	
			A _{th,Brm}	2.19 %	A(M _{dyn,M})	152 %	n _{per,th,out}	93.8 1 <i>/</i> min	J _{max}	166 kgm²	
			A _{Brm} (P _{max})	37.8 %	k _f	0.97	n _{in,max}	2492 1/min	n _{av}	71.6 1/min	
			Туре	ERBG012R01K9	k _{J,max}	9.7	n _{max}	175 1 <i>/</i> min			
			A _{th,Rb}	65.4 %			Meg	1026 Nm			
			A _{max,Rb}	61.3 %			A(M _{eq})	40.6 %			
							A(M _{max})	96.8 %			
							ACT	0 %			
							Ath1,G (nth)	47.8 %			
							A(n _{max})	71.2 %			
		3AC	đ	200	17	and the	1				
SAC								· · · · ·			
							1	and a			
			10	Je -				-			
					((#	y=f(x)	

Exercise 07 – Heavy duty chain conveyor

Possible selection of components:

Exercise07 Heavy duty chain conveyor V4 5.dsd Übersicht Antriebssystem Elektrisches Netz MS 080-32 g500-S400 Kettenförderer U Pcto 65,617 400 V PN 1,36 kW 1,1 kW ^lreg Nphs 3,0 2600 1/min 66,659 P_{rms.cto} 0,866 kW nΝ İact.G 50 Hz MN 5,00 Nm Ausführung Direktanbau P_{max} 1,1 kW Mmax TT/TN-Netz 2,80 A Mper.out 400 Nm 269 Nm ΙN A(M_{ms}) 67 % 1.00 39.61/min kG n_{max} $A(M_{max})$ 93 % 4500 1/min 0,133 m/s² a_{max} n_{per,in,max} 1,1 47,91/min Jmax 12,2 kgm² k_{J.max} n_{per.th.out} 2598 1/min 30,51/min n_{in,max} n_{av} 39,61/min n_{max} M_{ea} 233 Nm A(Mea) 58,3 % A(M_{max}) 67,1 % A(T) 0 % 57,9 % Ath1,G (Mth) A(n_{max}) 57,7 % 3AC ~~~ <u>_____</u> y=f(x)

Exercise 08 – Unwinder

Possible solution:

see commented dimensioning example unwinder

Solution: A warning regarding the maximum torque comes up. Click on exclamation mark or characteristics symbol below the motor leads to detailed information on the results (see next slide).

D.	Exercise09_tr	Exercise09_travelling_drive_MH_g500_V4_5.dsd *									
	Drive system overview										
	Sup	ply network	E94A3	SHE0474	м	H 160-22	g50	00-H3000	Travelling drive		
	U	400 V	PN	22.0 kW	PN	19.4 kW	i _{rea}	13.509	Pcto	37 kW	\neg
	N _{phs}	3.0	IN	47.0 A	n _N	2580 1 <i>/</i> min	i _{act,G}	12.762	P _{rms,cto}	15.3 kW	
l	f	50 Hz	l _{ma×}	94.0 A	M _N	71.8 Nm	Туре	Bearing flange	P _{max}	37 kW	
		TT/TN system	A _{th,max}	80.5 %	IN	37.7 A	M _{per,out}	2475 Nm	M _{max}	1868 Nm	
			A(l _{th,imp})	80.5 %	A(M _{rms})	86 %	k _G	1.00	n _{max}	191 1/min	
L			A(I _{red,max})	92.8 %	A(M _{max})	104 %	n _{per,in,max}	3500 1 /min	a _{max}	2.00 m/s ²	_
L			$A(I_{max,I} / I_{N,M})$	2.49	A(M _{dyn,M})	222 %	n _{per,th,out}	91.51/min	J _{max}	166 kgm²	
L			Ath,Brm	22.2 %	k _f	0.94	n _{in,max}	2437 1/min	n _{av}	73.51/min	
L			ABrm (Pmax)	77.6 %	k _{J,max}	17	n _{max}	191 1/min	-11		
L			Туре	ERBS015R02K4			Meq	1087 Nm	-11		
L			Ath,Rb	57.4 %			A(M _{eq})	43.9 %	-11		
L			Amax,Rb	77.5 %			A(M _{max})	98.9 %	-11		
L							A(M _{in,max})	17.4 %	-11		
L							A(1)	U %	-11		
L							Ath1,G (Rth)	50.3 %	-11		
L							(Minax)	03.0 %			
			-	1	-						4
L		3AC		5	46	223.	E.				
	-							2			
				K.	and a second			* *			
			I				(~~	æ	¥=f(x)	

Solution: This restriction in the available torque can be neglected for a travelling drive as the drive has enough time to compensate the following error at the end of the acceleration phase during dwell time.

08.05.2018

Solution: The drive reaches the voltage limit in this point of operation, which is compensated by an increase of the current.

Referent DSDTeam /SSC

Solution to 3:

Adapting the trapeze profile to s-shape in Application Tuner leads to significant increase of max. acceleration (2m/s² to 3m/s²) resulting in overutilisation of the drive components.

Overview Application

Result comparison

Inverters

Energy costs 📔 Energy comparison

Gearboxes Motor

Solution to 4:

Adapting the trapeze profile to s-shape and keeping the max. acceleration to $2m/s^2$ results in a higher max. speed. The increased fieldweakening factor kf leads to a better utilisation of the M-n characteristic. S-shape leads to a decoupling of max. speed and max. torque.

Exercise 10 – Rack drive

Solution: In the Motion Designer the coefficient of friction of the guide rail has to be considered as counterforce. Make sure to enter it like sign with the velocity.

Exercise 10 – Rack drive

Possible selection of components:

Exercise10_rack_drive_V4_5.dsd

Drive system overview

Supply network		E70ACMxx0104Sx1		M	MCS 09F60-		g700-P44		Rack drive	
U	400 V	P _N	2.20 kW	P _N	1.50 kW	İreq	8.8862	Pcto	2.3 kW	
Nphs	3.0	l _N	5.00 A	n _N	6000 1 <i>/</i> min	i _{act,G}	9.0000	P _{rms,cto}	1.33 kW	
f	50 Hz	I _{max}	10.0 A	MN	2.40 Nm	Туре	Bearing flange	P _{max}	2.3 kW	
	TT/TN system	A _{th,max}	69.5 %	I _N	4.50 A	M _{per,out}	44.0 Nm	M _{max}	32.6 Nm	
		A(I _{red,max})	82.4 %	A(M _{rms})	76 %	k _G	0.792	n _{max}	675 1 <i>/</i> min	
		A(I _{max,I} / I _{N,M})	2.22	A(M _{max})	73 %	n _{per,in,max}	7000 1 <i>/</i> min	a _{max}	7.78 m/s²	
				A(M _{dyn,M})	186 %	n _{per,th,out}	428 1 <i>/</i> min	J _{max}	0.0544 kgm²	
				k _f	1.0	n _{in,max}	6077 1 <i>/</i> min	n _{av}	312 1 <i>/</i> min	
				k _{J,max}	2.6	n _{max}	675 1 <i>/</i> min			
						Meg	21.1 Nm			
						A(M _{eq})	60.4 %			
						A(M _{max})	74.1 %			
						A(T)	0 %			
						A _{th1,G} (n _{th})	72.9 %			
						A(n _{max})	86.8 %			

Exercise 11 – Stacker crane

Motion profiles of both axes:

08.05.2018

Exercise 11 – Stacker crane

Topology Stacker crane:

08.05.2018

Best solution

Parameter	12a_Rewinder	12b_Rewinder	12c_Rewinder	
Motor				
Motor group	MHXMA	MHXMA	MH 29 Hz	
Type designation	160-22	132-22	160-22	
Rated power	11.0 kW	7.50 kW	6.28 kW	
Rated torque	71.5 <u>Nm</u>	49.1 Nm	71.5 <u>Nm</u>	
Rated speed	1470 1/min	1460 1/min	840 1/min	
Rated current	21.8 A	15.6 A	12.6A	
Rated voltage	400 V	400 V	400 V	
Moment of inertia	570 kgcm ²	336 kgcm²	570 kgcm ²	
Field weakening factor	2.0	3.0	4.0	
Utilisation with reference to the	83 %	<i>93 %</i>	72 %	
effective torque				
Utilisation, maximum torque (motor,	28 %	<i>34 %</i>	60 %	
inverter)				
Short-time overload	100 %	<i>97 %</i>	<i>87 %</i>	
Stationary torque efficiency	101 %	<i>97.6</i> %	87.2%	
Max. load-matching factor	445	338	334	
Inverters				
Inverter type	E94ASHE0244	E94ASHE0174	E94ASHE0134	
Rated inverter power	11.0 kW	7.50 kW	5.50 kW	
Output current	23.5 A	16.5A	13.0A	
Max. output current	58.8 A	49.5A	39.0 A	
Max. thermal <u>utilisation</u>	79.1 %	90.2 %	82.2 %	
Max. utilisation, power pulse current	55.9 %	62.6 %	<i>57.1%</i>	
Utilisation referenced to max. current	32 %	31 %	28 %	

Result:

The favorite (best performance for money ratio) is solution C featuring the smallest drive in combination with a motor (29Hz technology) with big frame size but small power. For a winding application the load-matching factor k_J is moderate.

By maximum utilisation of the field-weakening range the drive power can be reduced from 11 to 5.5kW.

M-n characteristic of MHXMA 160-22, 29Hz technology:

Exercise 13 – Project evaluation 1/2

1. Result of project evaluation: Motor, inverter and brake resistor have been selected with a high reserve.

🚥 Project_motion.dsd											
	Drive syste	ve system overview									
	:	Supply network	E84AV	TCx1534	мс	CA 19835-	g5	g500-B820		Travelling drive	
	U	400 V	P _N	15.0 kW	P _N	13.2 kW	İreq	12.405	Pcto	12 kW	
	Nphs	3.0	IN	32.0 A	n _N	3510 1/min	i _{act,G}	13.370	P _{rms,cto}	4.97 kW	
	f	50 Hz	Imax	64.0 A	M _N	36.0 Nm	Туре	Direct mounting	Pmax	9.4 kW	
		TT/TN system	A _{th,max}	49.2 %	IN	28.7 A	M _{per,out}	619 Nm	M _{max}	416 Nm	
			A(I _{red,max})	43.2 %	A(M _{ms})	35 %	k _G	1.00	n _{ma×}	283 1/min	
			A(I _{max,I} / I _{N,M})	2.23	A(M _{max})	<mark>46 %</mark>	n _{per,in,max}	4000 1/min	a _{max}	2.00 m/s ²	
			A _{th,Brm}	2.00 %	A(M _{dyn,M})	98 %	n _{per,th,out}	130 1/min	J _{max}	25.5 kgm²	
			A _{Brm} (P _{max})	22.7 %	k _f	1.1	n _{in,max}	3783 1 /min	n _{av}	109 1 <i>/</i> min	
			Туре	ERBS018R01K2	k _{J,max}	13	n _{max}	283 1 /min			
			Ath,Rb	43.3 %			Meq	225 Nm			
			A _{max,Rb}	22.7 %			A(M _{eq})	36.3 %]]		
							A(M _{max})	89.1 %			
							A(T)	0 %]]		
							Ath1,G (hth)	54.5 %			
							A(n _{max})	94.6 %			
				0							
JAC			_	. The	~				1		
				1							× ,
					3						
							-				
			1		((~	y=f(x)	

Exercise 13 – Project evaluation 2/2

Parameter	Project_motion.dsd	13b_MCA_5.2kW	13c_MF_7.5kW		
Lenze gearbox					
Gearboxes	g500-B820	g500-B820	g500-B820		
Actual gearbox ratio	13.37	13.37	14.63		
Thermal utilisation of the gearbox with mineral oil.	55 %	55 %	49 %		
Utilisation with reference to the max. Input speed.	95 %	95 %	92 %		
Utilisation, with reference to the equivalent torque	36 %	36 %	35 %		
Utilisation with reference to the max. Output torque.	89 %	89 %	85 %		
Motor					
Motor group	MCA	MCA	MFXMA		
Type designation	19S35-	19542-	100-32		
Rated power	13.2 kW	5.20 kW	7.50 kW		
Rated torque	36.0 Nm	12.0 Nm	20.3 Nm		
Rated speed	3510 1/min	4150 1/min	3515 1/min		
Rated current	28.7 A	14.0A	15.9A		
Field weakening factor	1.1	0.91	1.2		
Utilisation with reference to the effective torgue	35 %	76 %	61 %		
Utilisation, maximum torque (motor, inverter)	46 %	64 %	83 %		
Short-time overload	98 %	295 %	157 %		
Max. load-matching factor	13	13	18		
Inverters					
Inverter type	E84AVTCx1534	E84AVTCx1134	E84AVTCx7524		
Rated inverter power	15.0 kW	11.0 <i>k</i> W	7.50 kW		
Output current	32.0 A	23.5A	16.5A		
Max. output current 64.0 A		47.0A	33.0A		
Max. thermal utilisation	49.2 %	53.2 %	61.6%		
Utilisation referenced to max. current	43 %	76 %	72 %		
Brake resistor					
Brake resistor type	ERBS018R01K2	ERBS027R600W	ERBS027R600W		
Thermal utilisation of brake resistor	43 %	<i>90 %</i>	<i>92 %</i>		
Max. utilisation of brake resistor	23 %	34 %	35 %		

Exercise 14 – Hoist

Best solution

Parameter	14a_Hoist	14b_Hoist
Application		
Application base process power	23.8 kW	23.8 kW
Max. application power	8.33 kW	8.33 kW
Lenze gearbox		
Gearboxes	g500-B2700	g500-B2700
Actual gearbox ratio	11.71	19.54
Motor		
Motor group	m550-P	m550-P
Type designation	P180/M4	P160/M4
Rated power	18.5 kW	11.0 <i>kW</i>
Rated torque	119 <u>Nm</u>	71.1 <u>Nm</u>
Rated speed	1483 1/min	1478 1/min
Rated current	33.7 A	22.8A
Moment of inertia	1730 kgcm²	770 kgcm²
Field weakening factor	1.0	1.7
Utilisation with reference to the	72 %	74 %
effective torque		
Utilisation, maximum torque (motor,	76 %	60 %
inverter)		
Short-time overload	148 %	<i>152 %</i>
Max. load-matching factor	0.89	0.72
Inverters		
Inverter type	i550-C18/400-3	i550-C15/400-3
Rated inverter power	18.5 kW	15.0 kW
Max. thermal <u>utilisation</u>	67.7 %	60.3 %
Utilisation referenced to max. current	61 %	49 %

Result: Favorite is solution B with smallest drive and geared motor thanks to utilisation of field-weakening.

Exercise 15 – Energy efficiency

🔤 Lenze BlueGreen Solutions

Result: Favorite is solution no. 3 with synchronous motor and recovery of regenerative energy.

Lenze

23